3.15.89 \(\int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx\) [1489]

3.15.89.1 Optimal result
3.15.89.2 Mathematica [C] (verified)
3.15.89.3 Rubi [A] (verified)
3.15.89.4 Maple [A] (verified)
3.15.89.5 Fricas [A] (verification not implemented)
3.15.89.6 Sympy [F(-1)]
3.15.89.7 Maxima [A] (verification not implemented)
3.15.89.8 Giac [A] (verification not implemented)
3.15.89.9 Mupad [B] (verification not implemented)

3.15.89.1 Optimal result

Integrand size = 27, antiderivative size = 115 \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=\frac {15 a \text {arctanh}(\sin (c+d x))}{8 d}-\frac {15 a \csc (c+d x)}{8 d}+\frac {b \log (\tan (c+d x))}{d}+\frac {5 a \csc (c+d x) \sec ^2(c+d x)}{8 d}+\frac {a \csc (c+d x) \sec ^4(c+d x)}{4 d}+\frac {b \tan ^2(c+d x)}{d}+\frac {b \tan ^4(c+d x)}{4 d} \]

output
15/8*a*arctanh(sin(d*x+c))/d-15/8*a*csc(d*x+c)/d+b*ln(tan(d*x+c))/d+5/8*a* 
csc(d*x+c)*sec(d*x+c)^2/d+1/4*a*csc(d*x+c)*sec(d*x+c)^4/d+b*tan(d*x+c)^2/d 
+1/4*b*tan(d*x+c)^4/d
 
3.15.89.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.75 \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=-\frac {a \csc (c+d x) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},3,\frac {1}{2},\sin ^2(c+d x)\right )}{d}-\frac {b \log (\cos (c+d x))}{d}+\frac {b \log (\sin (c+d x))}{d}+\frac {b \sec ^2(c+d x)}{2 d}+\frac {b \sec ^4(c+d x)}{4 d} \]

input
Integrate[Csc[c + d*x]^2*Sec[c + d*x]^5*(a + b*Sin[c + d*x]),x]
 
output
-((a*Csc[c + d*x]*Hypergeometric2F1[-1/2, 3, 1/2, Sin[c + d*x]^2])/d) - (b 
*Log[Cos[c + d*x]])/d + (b*Log[Sin[c + d*x]])/d + (b*Sec[c + d*x]^2)/(2*d) 
 + (b*Sec[c + d*x]^4)/(4*d)
 
3.15.89.3 Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.09, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.481, Rules used = {3042, 3313, 3042, 3100, 243, 49, 2009, 3101, 25, 252, 252, 262, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \sin (c+d x)}{\sin (c+d x)^2 \cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3313

\(\displaystyle a \int \csc ^2(c+d x) \sec ^5(c+d x)dx+b \int \csc (c+d x) \sec ^5(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \csc (c+d x)^2 \sec (c+d x)^5dx+b \int \csc (c+d x) \sec (c+d x)^5dx\)

\(\Big \downarrow \) 3100

\(\displaystyle a \int \csc (c+d x)^2 \sec (c+d x)^5dx+\frac {b \int \cot (c+d x) \left (\tan ^2(c+d x)+1\right )^2d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 243

\(\displaystyle a \int \csc (c+d x)^2 \sec (c+d x)^5dx+\frac {b \int \cot (c+d x) \left (\tan ^2(c+d x)+1\right )^2d\tan ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 49

\(\displaystyle a \int \csc (c+d x)^2 \sec (c+d x)^5dx+\frac {b \int \left (\tan ^2(c+d x)+\cot (c+d x)+2\right )d\tan ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \csc (c+d x)^2 \sec (c+d x)^5dx+\frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 3101

\(\displaystyle \frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}-\frac {a \int -\frac {\csc ^6(c+d x)}{\left (1-\csc ^2(c+d x)\right )^3}d\csc (c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {a \int \frac {\csc ^6(c+d x)}{\left (1-\csc ^2(c+d x)\right )^3}d\csc (c+d x)}{d}+\frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}-\frac {a \left (\frac {5}{4} \int \frac {\csc ^4(c+d x)}{\left (1-\csc ^2(c+d x)\right )^2}d\csc (c+d x)-\frac {\csc ^5(c+d x)}{4 \left (1-\csc ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}-\frac {a \left (\frac {5}{4} \left (\frac {\csc ^3(c+d x)}{2 \left (1-\csc ^2(c+d x)\right )}-\frac {3}{2} \int \frac {\csc ^2(c+d x)}{1-\csc ^2(c+d x)}d\csc (c+d x)\right )-\frac {\csc ^5(c+d x)}{4 \left (1-\csc ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}-\frac {a \left (\frac {5}{4} \left (\frac {\csc ^3(c+d x)}{2 \left (1-\csc ^2(c+d x)\right )}-\frac {3}{2} \left (\int \frac {1}{1-\csc ^2(c+d x)}d\csc (c+d x)-\csc (c+d x)\right )\right )-\frac {\csc ^5(c+d x)}{4 \left (1-\csc ^2(c+d x)\right )^2}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {b \left (\frac {1}{2} \tan ^4(c+d x)+2 \tan ^2(c+d x)+\log \left (\tan ^2(c+d x)\right )\right )}{2 d}-\frac {a \left (\frac {5}{4} \left (\frac {\csc ^3(c+d x)}{2 \left (1-\csc ^2(c+d x)\right )}-\frac {3}{2} (\text {arctanh}(\csc (c+d x))-\csc (c+d x))\right )-\frac {\csc ^5(c+d x)}{4 \left (1-\csc ^2(c+d x)\right )^2}\right )}{d}\)

input
Int[Csc[c + d*x]^2*Sec[c + d*x]^5*(a + b*Sin[c + d*x]),x]
 
output
-((a*(-1/4*Csc[c + d*x]^5/(1 - Csc[c + d*x]^2)^2 + (5*((-3*(ArcTanh[Csc[c 
+ d*x]] - Csc[c + d*x]))/2 + Csc[c + d*x]^3/(2*(1 - Csc[c + d*x]^2))))/4)) 
/d) + (b*(Log[Tan[c + d*x]^2] + 2*Tan[c + d*x]^2 + Tan[c + d*x]^4/2))/(2*d 
)
 

3.15.89.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 49
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] 
&& IGtQ[m, 0] && IGtQ[m + n + 2, 0]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3100
Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] 
:> Simp[1/f   Subst[Int[(1 + x^2)^((m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]] 
, x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]
 

rule 3101
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_S 
ymbol] :> Simp[-(f*a^n)^(-1)   Subst[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 
 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n 
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])
 

rule 3313
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_ 
) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[Cos[e + f*x]^ 
p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[Cos[e + f*x]^p*(d*Sin[e + f*x 
])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2 
] && IntegerQ[n] && ((LtQ[p, 0] && NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] | 
| LtQ[p + 1, -n, 2*p + 1])
 
3.15.89.4 Maple [A] (verified)

Time = 0.94 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.88

method result size
derivativedivides \(\frac {a \left (\frac {1}{4 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{4}}+\frac {5}{8 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}}-\frac {15}{8 \sin \left (d x +c \right )}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+b \left (\frac {1}{4 \cos \left (d x +c \right )^{4}}+\frac {1}{2 \cos \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )}{d}\) \(101\)
default \(\frac {a \left (\frac {1}{4 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{4}}+\frac {5}{8 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}}-\frac {15}{8 \sin \left (d x +c \right )}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+b \left (\frac {1}{4 \cos \left (d x +c \right )^{4}}+\frac {1}{2 \cos \left (d x +c \right )^{2}}+\ln \left (\tan \left (d x +c \right )\right )\right )}{d}\) \(101\)
parallelrisch \(\frac {-15 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (a +\frac {8 b}{15}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+15 \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \left (a -\frac {8 b}{15}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+8 b \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 \left (\cos \left (2 d x +2 c \right )+\frac {3 \cos \left (4 d x +4 c \right )}{8}+\frac {9}{40}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) a \csc \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b \left (\frac {3 \cos \left (4 d x +4 c \right )}{4}-\frac {7}{4}+\cos \left (2 d x +2 c \right )\right )}{2 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(216\)
risch \(-\frac {i \left (15 a \,{\mathrm e}^{9 i \left (d x +c \right )}+40 a \,{\mathrm e}^{7 i \left (d x +c \right )}+8 i b \,{\mathrm e}^{8 i \left (d x +c \right )}+18 a \,{\mathrm e}^{5 i \left (d x +c \right )}+24 i b \,{\mathrm e}^{6 i \left (d x +c \right )}+40 a \,{\mathrm e}^{3 i \left (d x +c \right )}-24 i b \,{\mathrm e}^{4 i \left (d x +c \right )}+15 a \,{\mathrm e}^{i \left (d x +c \right )}-8 i b \,{\mathrm e}^{2 i \left (d x +c \right )}\right )}{4 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {15 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) b}{d}+\frac {15 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) b}{d}+\frac {b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}\) \(240\)
norman \(\frac {\frac {4 b \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 b \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a}{2 d}+\frac {13 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {5 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {5 a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {5 a \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {13 a \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {a \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {\left (15 a -8 b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}-\frac {\left (15 a +8 b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}\) \(250\)

input
int(csc(d*x+c)^2*sec(d*x+c)^5*(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/d*(a*(1/4/sin(d*x+c)/cos(d*x+c)^4+5/8/sin(d*x+c)/cos(d*x+c)^2-15/8/sin(d 
*x+c)+15/8*ln(sec(d*x+c)+tan(d*x+c)))+b*(1/4/cos(d*x+c)^4+1/2/cos(d*x+c)^2 
+ln(tan(d*x+c))))
 
3.15.89.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.38 \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=\frac {16 \, b \cos \left (d x + c\right )^{4} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) + {\left (15 \, a - 8 \, b\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) - {\left (15 \, a + 8 \, b\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) \sin \left (d x + c\right ) - 30 \, a \cos \left (d x + c\right )^{4} + 10 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, b \cos \left (d x + c\right )^{2} + b\right )} \sin \left (d x + c\right ) + 4 \, a}{16 \, d \cos \left (d x + c\right )^{4} \sin \left (d x + c\right )} \]

input
integrate(csc(d*x+c)^2*sec(d*x+c)^5*(a+b*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
1/16*(16*b*cos(d*x + c)^4*log(1/2*sin(d*x + c))*sin(d*x + c) + (15*a - 8*b 
)*cos(d*x + c)^4*log(sin(d*x + c) + 1)*sin(d*x + c) - (15*a + 8*b)*cos(d*x 
 + c)^4*log(-sin(d*x + c) + 1)*sin(d*x + c) - 30*a*cos(d*x + c)^4 + 10*a*c 
os(d*x + c)^2 + 4*(2*b*cos(d*x + c)^2 + b)*sin(d*x + c) + 4*a)/(d*cos(d*x 
+ c)^4*sin(d*x + c))
 
3.15.89.6 Sympy [F(-1)]

Timed out. \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)**2*sec(d*x+c)**5*(a+b*sin(d*x+c)),x)
 
output
Timed out
 
3.15.89.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.10 \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=\frac {{\left (15 \, a - 8 \, b\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (15 \, a + 8 \, b\right )} \log \left (\sin \left (d x + c\right ) - 1\right ) + 16 \, b \log \left (\sin \left (d x + c\right )\right ) - \frac {2 \, {\left (15 \, a \sin \left (d x + c\right )^{4} + 4 \, b \sin \left (d x + c\right )^{3} - 25 \, a \sin \left (d x + c\right )^{2} - 6 \, b \sin \left (d x + c\right ) + 8 \, a\right )}}{\sin \left (d x + c\right )^{5} - 2 \, \sin \left (d x + c\right )^{3} + \sin \left (d x + c\right )}}{16 \, d} \]

input
integrate(csc(d*x+c)^2*sec(d*x+c)^5*(a+b*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
1/16*((15*a - 8*b)*log(sin(d*x + c) + 1) - (15*a + 8*b)*log(sin(d*x + c) - 
 1) + 16*b*log(sin(d*x + c)) - 2*(15*a*sin(d*x + c)^4 + 4*b*sin(d*x + c)^3 
 - 25*a*sin(d*x + c)^2 - 6*b*sin(d*x + c) + 8*a)/(sin(d*x + c)^5 - 2*sin(d 
*x + c)^3 + sin(d*x + c)))/d
 
3.15.89.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.17 \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=\frac {{\left (15 \, a - 8 \, b\right )} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) - {\left (15 \, a + 8 \, b\right )} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) + 16 \, b \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) - \frac {16 \, {\left (b \sin \left (d x + c\right ) + a\right )}}{\sin \left (d x + c\right )} + \frac {2 \, {\left (6 \, b \sin \left (d x + c\right )^{4} - 7 \, a \sin \left (d x + c\right )^{3} - 16 \, b \sin \left (d x + c\right )^{2} + 9 \, a \sin \left (d x + c\right ) + 12 \, b\right )}}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{2}}}{16 \, d} \]

input
integrate(csc(d*x+c)^2*sec(d*x+c)^5*(a+b*sin(d*x+c)),x, algorithm="giac")
 
output
1/16*((15*a - 8*b)*log(abs(sin(d*x + c) + 1)) - (15*a + 8*b)*log(abs(sin(d 
*x + c) - 1)) + 16*b*log(abs(sin(d*x + c))) - 16*(b*sin(d*x + c) + a)/sin( 
d*x + c) + 2*(6*b*sin(d*x + c)^4 - 7*a*sin(d*x + c)^3 - 16*b*sin(d*x + c)^ 
2 + 9*a*sin(d*x + c) + 12*b)/(sin(d*x + c)^2 - 1)^2)/d
 
3.15.89.9 Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.13 \[ \int \csc ^2(c+d x) \sec ^5(c+d x) (a+b \sin (c+d x)) \, dx=\frac {\ln \left (\sin \left (c+d\,x\right )+1\right )\,\left (\frac {15\,a}{16}-\frac {b}{2}\right )}{d}-\frac {\ln \left (\sin \left (c+d\,x\right )-1\right )\,\left (\frac {15\,a}{16}+\frac {b}{2}\right )}{d}+\frac {b\,\ln \left (\sin \left (c+d\,x\right )\right )}{d}-\frac {\frac {15\,a\,{\sin \left (c+d\,x\right )}^4}{8}+\frac {b\,{\sin \left (c+d\,x\right )}^3}{2}-\frac {25\,a\,{\sin \left (c+d\,x\right )}^2}{8}-\frac {3\,b\,\sin \left (c+d\,x\right )}{4}+a}{d\,\left ({\sin \left (c+d\,x\right )}^5-2\,{\sin \left (c+d\,x\right )}^3+\sin \left (c+d\,x\right )\right )} \]

input
int((a + b*sin(c + d*x))/(cos(c + d*x)^5*sin(c + d*x)^2),x)
 
output
(log(sin(c + d*x) + 1)*((15*a)/16 - b/2))/d - (log(sin(c + d*x) - 1)*((15* 
a)/16 + b/2))/d + (b*log(sin(c + d*x)))/d - (a - (3*b*sin(c + d*x))/4 - (2 
5*a*sin(c + d*x)^2)/8 + (15*a*sin(c + d*x)^4)/8 + (b*sin(c + d*x)^3)/2)/(d 
*(sin(c + d*x) - 2*sin(c + d*x)^3 + sin(c + d*x)^5))